# 1/H-80 (ii) (Syllabus-2015)

### Odd Semester, 2020

(Held in March, 2021)

### COMPUTER APPLICATION

( Honours )

(BCA-102)

## ( Digital Computer Fundamentals )

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

#### UNIT-I

- (a) Convert the following into the specified bases:
  - (i) (19·75)<sub>10</sub> to Binary
  - (ii) (FD42)<sub>16</sub> to Decimal
  - (iii) (100100101)2 to Octal
  - (iv) (1163)8 to Binary

4-21/60

( Turn Over )

#### UNIT-II

3. (a) Simplify the Boolean equations: 2×3=6

(i) Y(A, B, D) = (A' + B)(A + B + D)D'

(ii) Y(A, B, C) = (A + C)(A' + B)

(iii) Y(A, B, C) = ABC + A'B + ABC'

(b) Convert the following Boolean function into standard SOP and express it in n-terms of minterms: 3×2=6

(i) Y(A, B, C) = AB + AC' + BC

- (ii) Y(A, B, C) = AB + ABC' + B'
- (c) With the help of logic gate diagram, explain 2-input X-NOR gate and give its truth table.
- (a) Simplify the following 3-variable expressions using Boolean algebra: 3×2=6

(i)  $Y(A, B, C) = \Sigma m(0, 1, 2, 3, 4, 5, 6, 7)$ 

- (ii)  $Y(A, B, C) = \prod M(1, 3, 5, 7)$
- (b) For the following functions, construct a truth table and draw the logic diagram: 2×3=6

(i)  $Y(A, B, C) = (A \oplus B)C'$ 

- (ii)  $Y(A, B, C) = ((A \oplus B)'(B + C'))'$
- (iii) Y(A, B) = (AB)' + B'

|     | (c) | Find the complement of<br>BD' + A'BC' + XYZ                                                                     | 3  |
|-----|-----|-----------------------------------------------------------------------------------------------------------------|----|
|     |     | UNIT—III                                                                                                        |    |
| 5.  | (a) | Represent the following Boolean function by Karnaugh map :                                                      | 4  |
|     |     | Y(A, B, C, D) = ABC + B'CD + BD                                                                                 |    |
|     | (b) | Simplify the following Boolean equations using K-map : 3+3                                                      | =6 |
|     |     | (i) $Y(A, B, C, D) = \prod M(1, 2, 5, 6, 8, 9, 15)$<br>(ii) $Y(A, B, C, D) = \sum m(1, 4, 6, 9, 10, 11, 14, 1)$ | 5) |
|     | (c) | Discuss 3-to-8-line decoder with proper logic diagram.                                                          | 5  |
| 6.  | (a) | Simplify the following four-variable<br>Boolean function using Quine-<br>McCluskey method :                     | 6  |
|     |     | $Y(A, B, C, D) = \Sigma m(2, 4, 5, 9, 12, 13)$                                                                  |    |
|     | (b) | Explain how the operations of a decoder can be inversed to get n-output lines for 2 <sup>n</sup> input lines.   | 4  |
|     | (c) | Implement Half Adder for two binary inputs and two binary outputs.                                              | 5  |
| -21 | /60 | ( Continued                                                                                                     | 1) |
|     |     |                                                                                                                 |    |

#### UNIT-IV

- (a) What are sequential circuits? How does they differ from combinational circuits? Explain. 3+2=5
  - (b) What are flip-flops? Discuss basic RS flip-flop using NAND gates. 1+5=6
  - (c) Explain triggering of flip-flops. How can they be sampled? 2+2=4
- (a) How can you get rid of the indeterminate states in clocked-RS flipflop? Discuss.
  - (b) What are the different types of sequential circuits? Discuss how they differ. 4+3=7

#### UNIT-V

- (a) Design a 3-bit synchronous binary counter using a T-flip-flop.
  - (b) How can you serially transfer information from register A to register B? Justify your answer with a proper example. 4+4=8
- (a) Compare and contrast between synchronous and asynchronous counters.

4-21/60

( Turn Over )

4

- (b) What is a register? Draw the logic diagram of a 4-bit register using any flip-flop. 2+3=5
- (c) Design a 4-bit Binary Ripple Counter using J-K flip-flop with proper count sequence table and a logic diagram. 6

\*\*\*