3/EH-24 (iii) (Syllabus-2015)

Odd Semester, 2020

(Held in March, 2021)

PHYSICS

(Elective/Honours)

[PHY-03(T)]

(Thermal Physics, Waves)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 which is compulsory and any **four** from the rest

- 1. (a) A monatomic van der Waals' gas is contained in a cylinder of molar volume 0.8 lit mol⁻¹ at a pressure of 36 atm. If a = 4.05 atm lit² mol⁻², b = 0.037 lit mol⁻¹ and R = 0.082 atm lit K⁻¹ mol⁻¹, calculate ctirical pressure and temperature of the gas.
 - (b) Two perfectly blackbodies A and B at temperature 227 °C and 327 °C respectively are kept in evacuated chamber kept at 27 °C. Compare the rate of cooling of A and B.

3

4-21/69

(Turn Over)

(c) Calculate the efficiency of a Carnot engine working between 127 °C and 27 °C. It absorbs 80 cal of heat at the source. How much heat is rejected at sink?

3

(d) A body at 1500 K emits maximum energy of wavelength 2000 nm. If the Sun emits maximum energy at 550 nm, what is the temperature of the Sun?

3

- (a) What is Brownian motion? Give its essential features.
 - (b) State the law of equipartition of energy. Prove that for a perfect gas whose molecules have f degrees of freedom

$$\frac{C_P}{C_V} = 1 + \frac{2}{f}$$

Hence show that for a mono-atomic gas $\gamma = 1.67$ and for a diatomic gas $\gamma = 1.4$. $2+4+\frac{1}{2}=7$

- 3. (a) State and explain the first law of thermodynamics. State and prove Carnot's theorem. 2+1+3=6
 - (b) Explain thermodynamic scale of temperature, and show that the thermodynamic and the ideal gas scales are identical. 1+4=5

4-21/69

(Continued)

4.	(a)	Explain the principle of regenerative cooling.	e 3
	(b)	Prove that the pressure of radiation normal to a surface is u , where u is the energy density of radiation.	
	(c)	Explain the terms Γ-space and Gibbs ensemble.	s' 2+2=4
5.	(a)	Derive Planck's law of blackbod radiation in terms of wavelength.	y 6
	(b)	Calculate the number of states in term of volume in phase space.	s 5
6.	(a)	Derive a general differential equation of motion of a simple harmonic oscillator and obtain its solution. 2+3=5	
	(b)	What is damping? On what factors the damping depends? What is the effect of damping on the natural frequency of a oscillator? 1+2	of
7.	(a)	Find the Fourier series for $f(x) = x$ in the closed interval $(-\pi, \pi)$.	1 6
	(b)	What is interference of sound waves? Is group velocity less than phase velocity or greater than phase velocity? 2+3=5	
4-21	/69	(Turn)	Over 1

- 8. (a) What is the wave nature of matter?

 Obtain an expression of de Broglie wavelength for matter wave. Why cannot we observe de Broglie wavelength with fast moving cricket ball?

 1+2+1=4
 - (b) Apply Heisenberg's uncertainty principle to explain the binding energy of an electron in a hydrogen atom of the order of 15 eV.
 - (c) Discuss the concept of a wave function and give its physical interpretation. 1+2=3

4

* * *